
Development Tools

Preliminary 6-1

AVR Development Tools
This section describes some of the development tools that are available for
the 8-bit AVR family.

• • ATMEL AVR Assembler
• • ATMEL AVR Simulator
• • IAR ANSI C-Compiler, Assembler, Linker, Librarian & Debugger
• • ATMEL In-Circuit Emulator (ICE)
• • EQUINOX Micro-Pro AVR Device Programmer

There are a lot of development tools under development, please contact
ATMEL for more details.

8-Bit 

Development

Tools



6-2 Development Tools   Preliminary   

ATMEL AVR Assembler

Features:
• Translates Assembler source programs into object code
• Extremely fast assembling
• Supports all the microcontrollers in the AT90S family
• Powerful Macro capabilities
• Supports all standard output formats
• Easy to use MS-Windows interface
• Editor included in MS-Windows version
• Jump to next/previous error
• Also available in MS-DOS command line version

Powerful Macro Capabilities
The Assembler contains powerful macro capabilities, enabling the user to build a virtual instruction set which is
structures of ordinary AVR instructions. For example, this macro does a 16 bit subtraction:

;
; SUB16 macro definition
; The macro subtracts a 16 bit constant from a register



Development Tools

Preliminary 6-3

; pair. A call to the macro is done by
; SUB16 Regh,Regl,Const
;
.MACRO SUB16 ; Macro name

subi $1,low($2) ; subtract low byte
sbci $0,high($2) ; subtract high byte

.ENDMACRO

; ...

; Call the macro
ldi r16,low(0x3400) ; set values in registers
ldi r17,low(0x3400) ;
SUB16 r17,r16,0x23a0 ; compute 0x3400-0x23a0

Assembly Directives
The assembler supports a number of directives making the application development easier. In addition to the directives
for macro generation and control, the assembler contains directives for:

• Including files. Included files can be nested.
• Set program origin.
• Symbol usage. The user can define symbols and labels and refer to these throughout the assembly program.
• Constant data initialization. The user can do constant initialization. Constants will be placed in the Flash

program memory.
• List file control.
• Support of expressions in a C-like syntax.

MS Windows Application
The assembler executes under the Windows environment. The Windows version can be executed under Windows 3.11,
Windows 95 and Windows NT. The Windows version includes a full editor for writing assembly programs. An MS-DOS
command line version is also available.



6-4 Development Tools   Preliminary   

ATMEL AVR Simulator

Features:
• Supports the whole range of AT90S microcontrollers
• Assembly source level simulation
• Powerful debugging facilities
• Full support of AVR peripheral devices
• Easy to use MS-Windows interface
 
 

Debugging Facilities
The simulator has a number of functions to help the programmer to debug programs including:

• Breakpoints: Set up to 256 breakpoints in the source window, and program execution will halt upon
reaching one of the breakpoints.

• Single stepping: Step through the code instruction by instruction and watch the execution.
• Step into/Trace over: Select whether calls should be traced, or if these simulation details should be omitted.
• Goto cursor: Place the cursor on an instruction, and the simulator will execute until the marked instruction

is reached.
• Run from file. The user can write scripts consisting of simulator commands.
• Display of registers and memory. The user can view all memory spaces, all general purpose working

registers and the registers in the I/O map. The user also has the ability to write values in these memories and
registers.



Development Tools

Preliminary 6-5

• Logging. All information, including register contents, memory contents and I/O accesses can be logged for
each instruction.

• The simulator holds control on the number of clock cycles elapsed.

All commands are available through a command window and through menus.

Simulation of Peripherals
The simulator supports the peripheral devices of  the AVR microcontrollers, including:

• Interrupts. Each interrupt can be set in each cycle enabling complex combinations including nested
interrupts.

• Timer/Counters. The timer/counters can also be simulated. This of course includes generating interrupts on
overflows and compare matches. Free running mode is also supported.

• I/O ports. The I/O ports are implemented, giving the user the ability to communicate with the simulated
programs through the ports.

Together with the powerful control mechanisms present, this makes the simulator a complete debugging tool for the AVR
family of Enhanced RISC Microcontrollers.

MS Windows Application
The simulator is developed for execution under the Windows environment. The Windows version can be executed under
Windows 3.11, Windows 95 and Windows NT.



Development Tools

Preliminary 6-9

ATMEL AVR In-Circuit Emulator

Features:
• Supports the whole range of AT90S microcontrollers
• Full visibility of all MCU resources
• Powerful breakpoint facilities
• Extensive execution control
• 32K x 96 bit wide Trace Buffer for real-time data collection
• 32-bit Time Stamp generator
• 8-Bit Event memory for event generation
• Supports 3 download modes
• Real time emulation
• Software adjustable clock speed
• Supports assembler and C source level debugging
• Supports all on-chip peripherals
• Serial- and parallel port interfacing
• Includes simple programmer
• Integrated with other AVR development tools

Full visibility
Using the emulator, the status of all resources can be monitored, and most of them can also be modified:

• The register file (R/W)
• SRAM (R/W)
• Program memory (R/W)
• EEPROM (R/W)
• Program Counter (R/W)
• I/O locations (R/W)

Powerful breakpoint facilities
The emulator incorporates powerful breakpoint facilities including:

• SRAM address breakpoint: Break when a specified address in the SRAM is read or written.
• SRAM data breakpoint: Break when a specified value is written to or read from SRAM.
• SRAM address and data breakpoint: An SRAM address breakpoint can be combined with an SRAM data

breakpoint.
• Program memory address breakpoint: Break when a specified program memory address is accessed.
• Program memory data breakpoint: Break when a specified value is read from the program memory.
• Register match breakpoint: Break when a specified value is read/written from/to one of the 32 registers.
• External trigger breakpoint: Break when an external signal is rising or falling.

 



6-10 Development Tools   Preliminary   

Extensive execution control
The emulator features extensive execution control:

• Single step execution: The emulator executes one instruction and then stops.
• Multiple step execution: The emulator executes a specified number of instructions and then stops.
• Software controlled Trace into/Step over.
• Start/Resume/Stop execution.
• Reset emulator.

Miscellaneous
• 5 trigger outputs are provided for connection to a DSO or a Logic Analyzer.
• Serial- and parallel port interface. The emulator can be connected to the PC through a standard serial- or

parallel port.
• Simple programmer. A device present in the socket can be programmed from the PC or from the emulators

program memory.
• In-circuit programming capabilities.
• Supports a wide range of download file formats like Intel Hex and Motorola S-Records.
• Fast download time.



EWA90 & ICCA90EWA90 & ICCA90

AVR  AT90S DEVELOPMENT TOOLS

EMBEDDED WORKBENCH

• Runs under Windows 95, NT and 3.11
• Total integration of compiler, assembler,

linker and debugger
• Plug-in architecture for several IAR

toolsets
• Hierarchical project presentation
• Tool options configurable on build target,

group of files or on file level

C COMPILER

• • Fully ANSI C compatible
• • Chip specific extensions to suit

development for embedded applications
• • Built-in AT90S specific optimizer
• Reentrant
• Supports AT90S2312 and AT90S8414

C-SPY

• • C source and Assembler level language
debugger

• • Powerful handling of complex breakpoints
• C like macro language
• I/O simulation
• Interrupt simulation

The IAR Embedded Workbench is a highly
evolved development tool for programming
embedded applications. The tool offers the
choice of C to all AT90S applications, from
single-chip to banked design. With its built-in
chip-specific optimizer, the compiler
generates very efficient, fast and reliable
PROMable code for the AT90S derivatives. In
addition to this solid technology, IAR also
provides professional technical support. Use
the IAR Embedded Workbench - and get to
market faster.



IAR C DEVELOPMENT TOOLS FOR THE AT90S

AN INTEGRATED ENVIRONMENT FORAN INTEGRATED ENVIRONMENT FOR
EMBEDDED PROJECT DEVELOPMENTEMBEDDED PROJECT DEVELOPMENT

The Embedded Workbench, EWA90, takes full
advantage of the 32 bit Windows 95 and NT
environment. The toolset can also run under
Windows 3.11 with the Win32s subsystem
(included in the package). The EWA90
implements the intuitive Windows 95 interface
with all its features.

Everything you need for
programming embedded applications
The EWA90 integrates IAR C compiler,
linker, librarian, and assembler in a seamless
environment with an easy-to-use project
feature and option handling. Each new IAR
Systems toolset for other chip families is easily
integrated into the Embedded Workbench,
reducing the start-up time for new targets.

Hierarchical project presentation
The project maintenance feature makes it
possible to have several targets, such as a
release target and a debug target, with
different settings of options. Each target is
built up of one or several groups which in turn
are built up of one or several files. Options for
the compiler and the assembler can be set on
target levels, group levels or file levels,
whichever is appropriate.

The Make System
The Make system automatically generates a
dependency list of output files, source files
and even include files. This allows the Make
system to only recompile or reassemble the
updated parts of the source code, which
speeds up the building process.

The editor
The EWA90 offers flexibility in terms of
customizable toolbar and user-defined
shortcut keys. The Editor implements the
basic Windows editing commands as well as
extensions for C programming, such as C
syntax coloring, and direct jump to context
from error listing.

Extensive on-line help
The on-line help function makes it easy to
quickly find specific help about the tool
without leaving the Embedded Workbench,
which reduces your learning time and thus
time to market.

DOS user interface
The IAR C compiler is also available under
DOS and is then called ICCA90. The DOS
version comes with a mouse-controlled, menu
driven User Interface allowing all development
steps to be performed in an integrated DOS
environment.



IAR C DEVELOPMENT TOOLS FOR THE AT90S

The C CompilerThe C Compiler

A complete package including
assembler, linker, librarian and run-
time libraries
The IAR C compiler, the core product in the
EWA90 and the ICCA90, is fully compatible
with the ANSI C standard. All data types
required by ANSI are supported without
exception (see figure 1). Full ANSI C
compatibility also means that the compiler
conforms to all requirements placed by ANSI
on run-time behavior, even those less known
yet important requirements such as integral
promotion and precision in calculating floating
point.

DATA TYPE SIZE
(bytes)

VALUE RANGE

sfrb 1 0 to 255
sfrw 2 0 to 65535
signed char 1 -128 to +127
unsigned char 1 0 to 255
signed short
unsigned short

2
2

-32768 to +32767
0 to 65535

signed int 2 -32768 to +32767
unsigned int 2 0 to 65535
signed long 4 -231 to 231-1
unsigned long 4 0 to 232-1
float
IEEE 32 bit

4 ±1.18E-38 to
±3.39E+38, 7 digits

pointer 1-2 object address
Figure 1. Data representation supported by the IAR C compiler.

Float and Double are represented in the IEEE
32 precision. Struct, array, union, enum, and
bitfield are also supported.

Reentrancy
The compiler generates fully reentrant code.
Any function can be interrupted and called
from the interrupting routine without the risk
of corrupting the local environment of the
function. This feature makes the IAR C
compiler ideal to use with real time operation
systems. Recursion is also supported.

Absolute read/write at C level
It is possible to access specific memory
locations directly from C. The following
example shows how location 10H and 11H are
accessed:

sfrb P0IN=0x10;
sfrb P0OUT=0x11;
void read_write(char c)
{
P0UT=c;
/*writes c to location 11H*/
c=P0IN;
/*reads location 10H into c*/
}

Built-in AT90S specific optimizer
The outstandingly and powerful optimization
technique, together with a reliable and high
quality program, makes the IAR C compiler
unique. The AT90S architecture specific
optimizer will automatically minimize the code
(see figure 2).

Examples of some optimization techniques
Strength reduction. Constant Folding
Short/long jump optimization. Case/Switch
optimization. Register history.
Peep-Hole. Additional peephole optimization.
Reversing branch conditions. Removing
unreachable code. Reusing duplicate code.
Eliminating superfluous branches. Optimizing
indeterminate storage operations.

Figure 2. The different optimization techniques that can be used by the
built-in optimizer.

Depending on the application, execution speed
may be more critical than smaller code. To
meet this need, the compiler has the powerful
feature of allowing the user to favor speed
optimization over code size.

AT90S specific extensions
To ideally suit development for embedded
systems, standard C needs additional
functionality. IAR Systems has defined a set



IAR C DEVELOPMENT TOOLS FOR THE AT90S

of extensions to ANSI C, specific to the
AT90S architecture (see figure 3). All of these
extended keywords can be invoked by using
the #pragma directive, which maintains
compatibility with ANSI and code portability.

TYPE KEYWORD DESCRIPTION
Function interrupt

monitor

C-task

Creates an interrupt function that
is called through an interrupt
vector. The function preserves
the register contents and the
processor status.
Turns off the interrupts while
executing a monitor function.
Declares a function as not
callable (e.g. main) to save
stack.

Variable no_init

sfrb

sfrw

tiny
near
flash

Puts a variable in the no_init
segment (battery backed RAM)
Maps a byte value to an absolute
address
Maps a word to an absolute
address
Access using 8-bit address
Access using 16-bit address
Access in the program address
space

Segment codeseg
constseg

dataseg

Renames the CODE segment
Creates a new segment for
constant data
Creates a new DATA segment
(These are mostly used to place
code and data sections in non
consecutive adress ranges)

Intrinsic _SEI
_CLI
_NOP
_OPC

_LPM

_SLEEP
_WDR

Enable interrupt
Disable interrupt
NOP instruction
Inserts the opcode of an
instruction into the object code
Returns one byte from the
program address space
Enter sleep mode
Watch dog reset

Figure 3. IAR Systems embedded C extensions.

All these extensions, coupled with absolute
read/write access, minimize the need for
assembly language routines.

Register and stack usage
The compiler offers a pre-planned dynamic
register allocation. This makes it possible to
use all 32 general purpose registers, except Y,
for expression evaluation and often used
variables.

Efficient floating point
The compiler comes with full floating point
support. It follows the IEEE 32-bit
representation using an IAR Systems
proprietary register based algorithm, which

makes floating point manipulation extremely
fast.

Macro-Assembler for time-critical
routines
The IAR C compiler kit comes with a new
relocatable macro assembler. This provides the
option of coding time-critical sections of the
application in assembly without losing the
advantages of the C language. The
preprocessor of the C compiler is incorporated
in the assembler, thus allowing header files to
be shared. C include files can also be used in
an assembly program. All modules written in
assembly can easily be accessed from C and
vice-versa, making the interface between C
and assembly a straightforward process.

Powerful set of assembler directives
The assembler provides an extensive set of
directives to allow total control on code and
data segmentation. Directives also allow
creation of multiple modules within a file,
macro definitions and variable declarations.

Linker
The IAR XLINK linker supports complete
linking, relocation and format generation to
produce AT90S PROMable code (see figure
4). XLINK generates over 30 different
formats and is compatible with most popular
emulators and EPROM burners. The XLINK
is extremely versatile in allocating any code or
data to a start address, and checking for
overflow. Detailed cross reference and map
listing with segments, symbol information,
variable locations, and function addresses are
easily generated.



IAR C DEVELOPMENT TOOLS FOR THE AT90S

Examples of linker
commands

Description

-Z seg_def

-F format_name

-x -l file_name

-D symbol=value

Allocates a list of
segments at a
specific address
Selects one of more
than 30 different
absolute output
formats
Generate a map file
containing the
absolute addresses
of modules,
segments, entry
points, global/static
variable, and
functions
Define a global
symbol and equates
it to a certain value

Figure 4. Example of different linker commands.

Librarian
The librarian XLIB creates and maintains
libraries and library modules. Listings of
modules, entry points, and symbolic
information contained in every library are
easily generated. XLIB can also change the
attributes on a module in a file or library to be
either conditionally or unconditionally loaded,
i.e. loaded only if referred or loaded without
being referred.

ANSI C libraries
The IAR C compiler kit comes with all
libraries required by ANSI. Additionally, it
comes with low level routines required for
embedded systems development (see figure 5).
These routines are provided in source code.

C LIBRARY FUNCTIONS
DIAGNOTICS <assert.h> assert
CHARACTER HANDLING <ctype.h> isnum, isalnum,
isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit tolower, toupper
VARIABLE ARGUMENTS <stdarg.h> va_arg, va_end,
va_start
NON LOCAL JUMPS <setjmp.h> longjmp, setjmp
INPUT/OUTPUT <stdio.h> getchar, gets, printf, putchar,
puts, scanf, sscanf, sprintf
GENERAL UTILITIES <stdlib.h> abort, abs, atof, atoi,
bsearch, calloc, div, exit, free, labs, ldiv, malloc, rand,
realloc, srand, strtod, strtol, strtoul, qsort
STRING HANDLING <string.h> memchr, memcmp,
memcpy, memmove, memset, strcat, strchr, strcmp. strcpy,
strcspn, strerror, strlen, strncat, strncmp, strncpy, strpbrk,
strrchr, strspn, strstr, strtok, strxfrm
MATHEMATICS <math.h> acos, asin, atan, atan2, ceil,
cos, cosh, exp, exp10, fabs, floor, fmod, ldexp, log, log10,
modf, pow, sin, sinh, sqrt, tan, tanh
PROGRAM ADDRESS SPACE ROUTINES
<pgmspace.h> printf_P, puts_P, scanf_P, sprintf_P,
sscanf_P, memory_P, strcmp_P, strcpy_P, strerror_P,
strlen_P, strncmp_P, strncpy_P
LOW-LEVEL ROUTINES <iccbutl.h> _formatted_write,
_formatted_read

Figure 5. Library functions. IAR C compiler comes with all libraries
required by ANSI.

Malloc, realloc, free and heap
One powerful feature uniquely offered by the
IAR C compiler kit is its ability to use malloc,
free, and the flexibility of controlling the heap
size. A file called heap.c is provided in source
code, which allows the user to increase or
decrease the heap.

Full, medium and small printf/scanf
By default, the compiler supports full ANSI
printf, sprintf, scanf, and sscanf including
floating point representation. The compiler
also includes reduced versions of the printf
and scanf formatters that support only the
most commonly used % specifiers. This
function reduces code size and increases
speed. Small, medium and full printf
formatters are available.



IAR C DEVELOPMENT TOOLS FOR THE AT90S

C-SPYC-SPY
More than just a high level language debugger

The IAR C-SPY, CWA90, is a high level language debugger incorporating a complete C expression
analyzer and full C-type knowledge. It combines the detailed control of code execution needed for
embedded development debugging with the flexibility and power of the C language. CWA90 shows
the calling stack as well as tracing on both statement and assembler levels. The source window can
display C source code and mix it with assembler. There is also a ”locals” window showing the auto
variables and parameters for the current function.

User configurable register window
The optional CWA90 is integrated with the
Embedded Workbench, implementing the
intuitive Windows 95 interface with all its
features. CWA90 is user-friendly with
customizable toolbar, drag and drop facility
and user-configurable shortcut keys. It is also
configurable in the sense that the user can
choose which windows to display.

Powerful breakpoint setting
CWA90 allows you to set unlimited number of
breakpoints. Breakpoints can be set on C
statements, assembler instructions, and on any
address with an access type of read, write and
opcode fetch or as a combination of these. The
breakpoint can be extended with an optional
condition. After triggering a breakpoint, any
optional macro commands can be executed.

C-like macro language
A powerful, yet easy-to-use C-like macro
language can tailor the environment used for
debugging in the C-SPY. It includes special
system macros for host file I/O simulation,
reset, start up, and shut down, as well as
statements such as for loops, while loops, if
and return. Functions declared in the macro
can contain specific C-SPY variables, both
local and global.

Interrupt simulation
Interrupt simulation implements commands to
launch specific interrupts at a specific cycle-
count or periodically to a given cycle-interval.
The interrupt simulation can also be set to
generate intermittent interrupts. The simulator
then uses the same algorithm as the hardware
for choosing the highest priority interrupt to
be executed.

I/O simulation
Breakpoint simulation and macro language
allow most complex external environment to
be simulated. Since I/O simulation is built up
with the macro language, it is easy to
customize and very easy to extend. CWA90
terminal I/O emulation offers a console
window for target system I/O. This unique
feature is useful for debugging embedded
applications when logical flows are of interest
or the target is not yet ready.



IAR C DEVELOPMENT TOOLS FOR THE AT90S

Watch points
The watch window makes it possible to watch
any expression. The window itself will be
updated whenever a breakpoint is triggered or
a step is finished. Any variable can be modified
during the execution by using specific C
expressions.

Assembler low level debugger
The source window for the assembler
debugger displays the assembler instructions.
It has a built-in assembler and disassembler
function, menu and register window, and can
evaluate assembler expressions.

DOS Version
IAR C-SPY is also available in a DOS-
version, the CSA90.

Summary of available AT90S Tools
• • EWA90 Windows Embedded Workbench (Including Compiler, Assembler & Linker)

• • CWA90 Debugger/Simulator for the EWA90

• • ICCA90 Integrated C Compiler for DOS (including Assembler & Linker)

• • CSA90 Debugger/Simulator for the ICCA90

• • AA90 Assembler

Support and updates
IAR Systems AT90S tool kit comes with the following benefits:
• Free telephone, fax, and email technial support.
• 90 days warranty after purchase.
• Extensive documentation including a step-by-step tutorial.

Hosts
PC: Minimum 386, with Windows 95, Windows NT 3.5 or Windows 3.1x with at least 4MB RAM
available for the EWA90. DOS 5.0 with at least 2MB RAM available for the ICCA90.

Contact Information:

USA
IAR Systems Inc.
One Maritime Plaza
San Francisco,
CA 94111
Tel:  +1 415-765-5500
Fax: +1 415-765-5503
Email: info@iar.com

SWEDEN
IAR Systems AB
P.O. Box 23051
S-750 23 Uppsala
Tel:   +46 18 16 78 00
Fax:  +46 18 16 78 38
Email: info@iar.se

GERMANY
IAR Systems GmbH
Brucknerstrasse 27
D-81677 Munich
Tel:  +49 89 470 6022
Fax: +49 89 470 9565
Email: info@iar.de

UK
IAR Systems Ltd.
9 Spice Court,
Ivory Square
London SW11 3UE
Tel:  +44 171 924 3334
Fax: +44 171 924 5341
Email: info@iarsys.co.uk

Home Page: http://www.iar.se

Copyright 1996 IAR Systems
IAR is a registered trademark of IAR Systems. Embedded Workbench, XLINK, XLIB, and C-SPY are trademarks of IAR Systems. MS-DOS and
Windows are trademarks of the Microsoft Corporation. All other products are registered trademarks or trademarks of their respective owners.
Product features, availability, pricing and other terms and conditions are subject to change by IAR Systems without further notice.



Development Tools

Preliminary 6-11

EQUINOX Micro-Pro AVR Device Programmer

Features
• Programs the entire range of AVR Flash-based microcontrollers
• Field programmable hardware - allows new devices to be added via a simple software update
• Fast device programming speeds due to optimized FPGA hardware for each target device
• Fast data transfer via PC parallel port
• Comprehensive front-end programming software including buffer editor
• Accepts up to 40-pin DIL devices directly without adapter

Compatible with most PCs
• Runs on IBM XT up to Pentium PC
• Compatible with desktop and Laptop PCs
• Connects to a spare PC parallel port via cable supplied
• Compatible with both standard and enhanced parallel ports

Comprehensive menu driven software:
• DOS-based - Microsoft Windows and Windows compatible
• Buffer editor - color coded displays HEX and ASCII values
• Buffer - Blank Check / Erase / View / Fill / Edit / Search / Copy / Goto
• Device - Select / Guess / Check Signature / Orientation / Auto Program / Blank Check / Erase / Program /

Read / Verify / Secure
• File - Load / Save / View - Intel HEX & Binary formats
• <Auto-Program> Hot Key - Erase, program, verify & secure with one key-press
• <Load Last> Hot Key - Automatically loads last file into buffer with one key press

Micro-Pro AVR Programming System contents:
• Micro-Pro AVR device programmer
• PC Software on 3.5" HD diskette
• Power supply
• PC parallel cable
• Atmel Microcontroller Data Book

Optional programmer accessories:
• PLCC-44 to DIL-40 Package adapter ( AD-PLCC44-A )
• SOIC-20 to DIL-20 Package Adapter ( AD-SOIC20-A)
• In-circuit emulator / re-programming adapter for the AVR family



6-12 Development Tools   Preliminary   


	Data Book TOC
	AVR Development Tools
	ATMEL AVR Assembler
	Features
	Powerful Macro Capabilities
	Assembly Directives
	MS Windows Application

	ATMEL AVR Simulator
	Features
	Debugging Facilities
	Simulation of Peripherals
	MS Windows Application

	ATMEL AVR In-Circuit Emulator
	Features
	Full visibility
	Powerful breakpoint facilities
	Extensive execution control
	Miscellaneous

	EWA90 & ICCA90 EWA90 & ICCA90
	Embedded Workbench
	C Compiler
	C-SPY
	An Integrated Environment for Embedded Project Development
	Everything you need for programming embedded applications
	Hierarchical project presentation
	The Make System
	The editor
	Extensive on-line help
	DOS user interface

	The C Compiler
	A complete package including assembler, linker, librarian and run-time libraries
	Reentrancy
	Absolute read/write at C level
	Built-in AT90S specific optimizer
	AT90S specific extensions
	Register and stack usage
	Efficient floating point
	Macro-Assembler for time-critical routines
	Powerful set of assembler directives
	Linker
	Librarian
	ANSI C libraries
	Malloc, realloc, free and heap
	Full, medium and small printf/scanf


	C-SPY: More than just a high level language debugger
	User configurable register window
	Powerful breakpoint setting
	C-like macro language
	Interrupt simulation
	I/O simulation
	Watch points
	Assembler low level debugger
	DOS Version
	Summary of available AT90S Tools
	Support and updates
	Hosts
	Contact Information


	EQUINOX Micro-Pro AVR Device Programmer
	Features
	Compatible with most PCs
	Comprehensive menu driven software
	Micro-Pro AVR Programming System contents
	Optional programmer accessories


